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ABSTRACT 

The Baire number  is defined for a topological space without  isolated points 

as the minimal size of the family of nowhere dense sets covering the space 

in question. We prove that  in the case of U(~), the space of uniform 

ultra2ilters over uncountable ~r the Baire number  equals either Wl or w2, 

depending on the cofinality of ~. The results axe connected to the collapsing 

of cardinals when using the quotient algebra ~ (~ )  mod[~] <~ as the notion 

of forcing. 

The aim of the present paper is to evaluate the Baire number of U(~), the space 

of uniform ultrafilters on the discrete set of cardinality ~. Recall that  for a 

topological space X without isolated points, its Baire number n ( X )  is defined as 

the smallest size of the family of nowhere dense sets covering X. Our attention 

will be focused on uncountable ~, because n(U(w)) was fully discussed in [BPS] 

as follows: Denote by [} = min{r: the Boolean algebra P(w) / f i n  is not (%., 2)- 

distributive}. Then D is a regular cardinal, wl _< I) < min(cf(r b,s), and for 

n(U(w)) one has: (a) w2 <_ n(V(w)) ,  (b) if ~ < r then D _< n(U(w)) <_ D +, (c) if 
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[~ = r then r _< n(U(w)) _< 2 r and all possibilities not violating (a), (b), and (c) 

may happen, depending on the actual set theory. See also [Do]. 

Here we show that for ~ with uncountable cofinality the Baire number is not 

influenced by additional axioms of set theory (in fact, they are all equal to wl) 

and for uncountable ~ with countable cofinality it appears very likely that the 

value is always w2. 

We are grateful to Alan Dow and Klaas Pieter Hart for stimulating discussions 

on the topics investigated here. 

The notation used throughout the paper is the standard one. Small Greek let- 

ters a, ~, ~?,... denote ordinals, ~ and A always stand for infinite cardinals. [~]<~ 

denotes the set {M c_ ~: [M[ < A}, similarly for [~]<~ and [~]~. A u n i f o r m l y  

a l mos t  d is joint  f ami ly  (abbr. UAD) is a family B C_ [,~]~ such that for any 

two distinct Bo, B1 E I3 one has [B0 N BI[ < ~. For M C_ ~, M denotes the set 

c la iM A U(~), where ~ is the Cech-Stone compactification of ,~. 

Let us begin with a trivial observation showing the lower bound for the Baire 

numbers in question. 

OBSERVATION: For each infinite ,~, n(U(,Q ) >_ wl. I f  moreover cf(,~) = w ,  then 

n(U(~)) >_ w2. 

Indeed, since U(~) is compact, the first half is an immediate consequence 

of the Baire Category Theorem. If cf(~) = w, then the intersection of every 

countable decreasing sequence of a non-empty clopen subsets of U(~) has non- 

empty interior. This fact together with an easy transfinite induction is enough 

to verify that  no family of size wl of nowhere dense subsets of U(~) covers U(~). 

We shall frequently use the forthcoming lemma that  is a mild strengthening of 

a known statement due to W. Kulpa and A. Szymafiski [KS]. 

LEMMA 1: Let X be a space without isolated points, and let T be an infinite 

cardinal number. I f  there is a family {);~: a < T} such that 

(a) for each a < r, V~ is a pairwise disjoint family of non-void open subsets of 

X ,  

(b) for each a < r, [Y~[ > r ,  

(c) for each nonempty open U C_ X there is some a < r such that for all 

v e v ~ , U n V r  

then n ( X )  <_ r +. 
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Proof: 
q , < r  + 
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For a < r ,  enumerate ]Y~ as V~ = {V(a , ( ) :  ~ < IV~I} and define for 

c,<r 3,_<{<r+ 

This is clearly possible by (b). By (a), every set W~ is a union of open sets, hence 

open. If U c_ X is open and non-empty, then by (c) it meets all V(c~, {) for some 

< r .  Therefore U N U-y<_{<r+ V(~, {) ~ 0 and consequently U N W-y ~ 0 for 

every 7 < r +. So each set W~ is dense. If x E X and c~ < r ,  then by (a), there is 

at most one {(c~) < r + with x e V(~,{(a) ) .  Let I' < r + be such that  "~ > ~(c~) 

for all those ~ < r for which {(~) is defined. For this % we have that  x ~ W~, 

which implies that  N-y<r+ W'r = 0. Passing to complements X \ W.y(3' < r+) ,  

we obtain the family of nowhere dense sets covering X. | 

Our next lemma is easy, too. Let us remind ourselves that  a mapping f :  X , 

Y between two topological spaces is called s em i -o p en ,  if for every non-empty 

open U C X the interior of the image flU] is non-empty. 

LEMMA 2: Let X, Y be dense-in-itself topological spaces. If there is a continuous 

semi-open mapping f from X onto Y,  then n(X) <_ n(Y). 

Proof: If UIP = Y, then U{f - l [D] :  D e i/)} = X for any onto mapping and 

any family 79 of subsets of Y. So it suffices to show that  the preimage of a 

nowhere dense subset D C_ Y is nowhere dense in X. We may assume that D is 

closed; then by the continuity, f-~[D] is closed, too. If U = Intf-~[D] # 0, then 

0 ~ Intf[U] c D, because f is semi-open. But this contradicts the assumption 

that D is nowhere dense. | 

COROLLARY: 

(a) If  X is compact dense-in-itsels then n(X) = n(E(X)), where E(X) denotes 

the G1eason space (absolute, projective cover) of X.  

(b) I f~  is a singular cardinal, then n(U(~)) <_ n(U(cf(~))). 

Proof: (a) The canonical projection rr: E(X) --+ X is continuous, semi-open and 

onto. Thus n(X) >_ n(E(X)) by Lemma 2. However, rr is also irreducible, which 

implies that the image of a closed nowhere dense subset of E(X) is nowhere dense 

in X. Hence n(X) < n(E(X)) 

(b) Denote A = cf(~) and choose an onto mapping f :  ~ ~ A such that  for 

every ~ < ~? < A, I f - l (~) l  < ]f-l(~?) I < ~. Let g = / ~ f  [ U(~), where /~f  is the 
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Cech-Stone extension/3f:/3~ -*/3A. Then g maps U(~) continuously onto U(A). 

If V _C U(~) is nonempty and open in U(~), then for some M C_ ~ with IMI = ~, 

c l ~ M  M U(~) C_ Y. By our choice of the mapping f ,  clearly If[M]] = ,~, hence 

g[V] D_ c l i f f [M]  M U(A). The last set is nonempty and open in U(A), which 

shows that g is semi-open. Now, Lemma 2 applies. I 

Now we are ready to present the first statement. 

THEOREM 1: Ifcf(~) > w, then n (U(g) )  = co 1. 

Proof: The inequality n(U(g ) )  >_ col follows by the Observation. If a is a 

singular number, then col _< n(U(g) )  <<_ n(U(cf(a))) by the previous corollary. 

Therefore it suffices to show that n(U(g) )  <_ col for g regular uncountable. 

Let us order the family ~a by f _< g iff [{( < a: f ( ( )  > g(()}[ < g and put 

b~ = min{{IFl: F C ~;  has no upper bound}. A standard diagonal argument 

shows that  b~ _> g+. 

The following statement together with full proof can be found in [BS, Theorem 

2,8]: 

Let g be a regular uncountable cardinal. Then there is a collection 

{An,~: n E co, a E b~} such that: 

(i) For each n < co, U{An,~: a E b~} is a maximal CAD family on g; 

(ii) for each n < co, a </3  < be, An,~ Cl A~,Z = 0; 

(iii) for every M c [~]~, there is some n < co such that  for each a < be, I M ~ A I  = 

for some A E ,A . . . .  

Evidently, this is sufficient for the application of Lemma 1 with v = co. If 

we define l)n = { Y ( n , a ) :  a < b~}, where V ( n , a )  = U{A: A �9 An,~} ,  then 

the family {l)n: n < co} satisfies all the assumptions of Lemma 1 - -  (i) and (ii) 

imply (a), (c) follows from (iii), and as b~ > ~ > co+, (b) is satisfied, too. Thus 

< col. I 

THEOREM 2: I f  t~ > cf(g) = w, then n (U(n) )  = co2, provided that  either 

(a) - , C H ,  or 

(b) 2 ~ = co2, or 

(c) = 2 

holds. 

Proof'. Our aim is to find a family {V~: a < col} satisfying the assumptions of 

Lemma 1. To do so, we shall slightly modify the proof of [BS, Theorem 2.7 (ii)]. 

To be precise, we shall construct a collection {A~,e: a < col, ( < r such that  
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(i) for each a < Wl,.Aa = U~<c J[a,~ is a maximal UAD family on ~, 

(ii) for each a < Wl, ~ < 7/< r A~,e A A~,,  = 0, 

(iii) for every M E [,~]~ there exists an a < wl such that  for every ~ < r there 

is some A E Aa,e with [M n A[ = ~. 

An analogous reasoning as in the proof of the previous theorem shows that  

Lemma 1 applies, provided c > wl, since we can ensure only that  [V~ I = c. 

Assuming (c), we can construct a similar family {A~,~: a < ~1, ~ < 2 ~ } having 

the respective three properties, with 2 ~ replacing c everywhere. We conclude the 

proof showing the statement under (b). 

The construction is done using transfinite induction. Simultaneously with 

{Am: a < wl} we shall find a family {fA: A E A ~ , a  < ~1} where fA: A ---+ ,~ is a 

one-to-one function. 

Let -40 = {,~}, let f~ be the identity function on ,q let Ao,o = .Ao, Ao,e = 0 for 

0 < ~ < r  

Let a < wl and suppose that  ,4~ and all fA, A E .4~, are known. We notice 

the following: 

OBSERVATION: Whenever fA: A --+ ,~ is a one-to-one function (A E [~]~) and 

B E [A] ~ then there is a set C E [B] ~ and a one-to-one mapping re: C ~ ~ such 

that f c (7 )  < fA(7)  for all 7 6 C. 

Indeed, let h be a one-to-one increasing mapping from fA[B] onto ,~. Define 

C = {7 E B: h( fA(7))  is a successor ordinal} and for 7 E C, let f c ( 7 )  -- f ,  where 

is the (unique) ordinal satisfying h(f) + 1 = h(fA(7)) .  This works. 

By the observation, for each A E A~ one can find a maximal UAD family 

A(A)  on A such that  every B E A(A)  is a domain of a one-to-one function fB 

satisfying fB(7)  < fA(7) for all 7 E B. Let A~+I = U{.A(A): A E A~}. Finally, 

let A~+l,0 = r A~+l,~ = 0 for 0 < ~ < c. 

Let a < Wl be a limit ordinal and suppose that  all AZ (/3 < a)  and fA 

(A E A~, ~ < a)  have been found. The inductive assumptions are as follows: if 

]~0 < ~1 < a, Ao E AZo,A1 E AZ,, then either ]Ao n All < ,~, or [ A I \ A o [  < ,~ 

and in this case [Ao \ All = t~ and fA, (7) < fAo(7) for all 7 E Ao A A1. 

Fix a strictly increasing sequence of regular cardinals (~,:  n E w) converging 

to ,~ and a strictly increasing sequence (a,~: n E w) of ordinals converging to a.  

Call a c h a i n  a family C = {A,~: n E w}, where A,~ E A~.  and [An+l \ An[ < t~ 

for all n E w. 
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Fix a chain C = {A,~: n E w}. Before proceeding further, we shall need two 

statements. The first one is analogous to the corresponding observation from the 

successor step of the induction. 

FACT 1: Let B E [~]~ be an arbitrary set satisfying [B \ A,~[ < ~; for all n E w. 

Then there is a set C E [B] ~ and a one-to-one mapping ]c: C ~ ~ such that for 

all n 6 w and for all 7 6 An n C we have f c ( 7 )  < f A ,  (7). 

For "r E B n A o ,  define g(7) = min{fA, ('r): n E w,7 E A,~}. Since all mappings 

fAr are one-to-one, every preimage g- t (8)  is at most countable. Let D C B be 

any set satisfying [D I = h a n d  IDNg- I (8 ) ]  _< 1 fo r  a l l~ < ~. T h e n g  r D i s  

one-to-one and g(7) < fAr (7) for all n E w, 7 E D n AN. Applying the previous 

observation to D and g r D, we can find C E [D] ~ and a one-to-one f c :  C ~ 

as required. 

The second statement is Theorem A from [BV]. The reader is advised to consult 

the proof there. Let Big  = {Z C wxw:  [{n E w: I{i e w: (n, i )  E Z}] = w}l = w}. 

FACT 2: There is an almost disjoint family T consisting of  graphs of infinite 

partial functions from w to w such that for every Z �9 Big, [{T �9 T: T C_ Z}[ = r 

Since [Big[ _< r a standard argument enables one to find a partit ion T = 

Ue<r T~ such that  for every Z �9 Big  and every ~ < r there is some T �9 T~ with 

T C_ Z. Let us fix such a partit ion and we may continue with the proof. 

For n �9 w, choose a partit ion {R~,~: i �9 w} of the set Nj<~ Aj \ A~+I such 

that [Rn,il = hi. For T �9 T,  let B ( T )  = U{Rn#: (n, i )  �9 T}. According to our 

definitions, for every T �9 T and for every n �9 w, [B(T) \ An[ < a. Applying 

Fact 1, we can find a family .4(C) with the properties as follows: 

(1) The family A(C) is UAD, 

(2) for every A �9 A(C) and every n �9 w, [A \ As[ < ~n, 

(3) the family A(C) is the maximal one satisfying (1) and (2), 

(4) for every A �9 A(C) and every T �9 T,  either [A \ B(T)[ < ~ or [ANB(T)[  < 

(5) for every A E A(C) there is a one-to-one function ]A: A ~ ~ such that  for 

every n �9 w and every 7 �9 A M An, fA(7) < fA~(7). 

Decompose the family A(C) as follows: For 0 < ~ < r let A(C,~) = 

{A E A(C): I A \ B(T)[ < ~ for some T �9 T~}, A(C, 0) = A(C) \ U0<~<r A(C, ~). 

Now it remains to define 

A~ = U { A ( c ) :  c is a chain}, A~,e = U{A(c ,~ ) :  c is a chain} for f < r 
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The verification that .As is a maximal UAD family is easy and straightforward. 

This completes the inductive definitions. 

We have to verify that (iii) holds, since (i) and (ii) are clearly true. Let 

M E [a]~ be arbitrary. First we shall show that  there is some a < wa such that 

]M M A] = a = IM N A'] for two distinct A, A' E As.  

Suppose the contrary. Since every .As is maximal, there is some As E As such 

that  IAs N M] = ~; by our assumption this As is unique. So ]M \ AsI < ~. 

Since the cofinality of ~ is countable, there is a cardinal r < ~ such that the set 

J = {a < wl: I M \ A s l  < T} is uncountable. Since ~ > r 'wa,  IM" .Nse . ]As I  < 

~. Hence the set K = M N Nseg Aa is of full size g. Choose a strictly increasing 

sequence (an) ranging in J and -y E K. Denoting fn = f a , . ,  we get from the 

inductive construction a decreasing sequence of originals ]o('y) > st1 (~) > f2('Y) > 

�9 . . ,  a contradiction. 

In order to show (iii), we start  with finding a suitable a < wl. Let/30 < wl be 

such that for some B0 E A~o one has ]M M Bol = g = I M \ Bo]. Next, consider 

the set MNBo and find/31 and Bx E At~ , with IMNBoMBI] = ~ = ]MNBo \ BI]. 

Proceeding further, we shall find for all n E w an ordinal/3,  and a set Bn E .A~. 

satisfying [M N Ni< .  Bi[ = ~ = [M N Ni< .  Bi \ B.[. 

Let a = supn<~/3,. When the a- th  induction step took place, we used a 

sequence ( a . :  n E w) cofinal in a and we had to consider all possible chains. In 

particular, we dealt with the chain C = (An), A .  E .As. having the property that  

[A. M Bm[ = ~ for all n, m E w. For this C we clearly have [M N A.  \ A.+I[ = 

for infinitely many n E w. Therefore the set 

Z = {(n, i )  E w x w: n < i and [M flRn,i[ > t~.} 

belongs to Big. 
Let ~ < r be arbitrary; using Fact 2 choose a set T E T~ with T C_ Z and 

consider the set B(T) .  By the definition of the set Z, for every (n, i) E T one has 

]M~P~,i] > ~, .  Since T is an infinite graph of a partial function, ]MNB(T)] = ~. 

Since .A(C) is maximal there is some A E .A(C) such that  I A M M M B(T)I  = a. 

For this A, I A \ B ( T ) ]  < g by (4), and, as T E T~,A E A(C,~). So we succeeded 

to find an a < wl and A E As,~ with IA N M] = a. 

Assume now that  (c) holds, i.e., a~ = 2 ~. Consider the family {As: a < wl} 

constructed in the previous part of the proof. It was proved in [BS, 5.2-5.5] that  
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once (1), (2), (3) and (5) are satisfied at every limit stage of the construction, 

then the following is true. 

For every M E [~]~ there is some  (~ < Wl wi th  I{A E As:  [A M M[ = n}[ _> tr ~. 

For the sake of completeness, we shall briefly repeat the proof from [BS]. 

We have already noticed that  if M E [~]~, then for some a = supne~ an < wl 

and for a chain C = {An: n E w} with An E A ~ , [ M  n An \ A n + l [  = ~r for 

infinitely many n's. 

Now, since one has [A \ Ant < ten for every A E A(C)  and every n E w by (2), 

a s tandard diagonalization argument yields that  [{A E As:  tM M AI = n}[ _> n+. 

In order to pass from tr + to ~ ,  let us consider the minimal cardinal T satisfying 

~-~ _> n~. Two cases are possible: Either ~- = 2 and then we are allowed to 

use (a); or cfr  = W. If  the second possibility occurs, choose a strictly increasing 

sequence {Tn: n E w} of cardinals converging to T. 

The canonical tree of all functions ~ with dom ~ = n and ~(i) E Ti for i < 

n (n E w) has r ~ branches. We shall define by induction two mappings F, G 

from all nodes of the tree. Choose A E ,4o with [AM M[ = ~ and let F(@) = A, 

G(0) = 0. If domqo = n and F (~ )  = A and G(qa) = a E Wx are known and 

A E ,4~, [A n M[ = ~ holds, then there is some ~ satisfying a < ~ < wl and 

[ { B E  A~: [ B A A A M [  = n}[ >_ ~+. D e f i n e G ( ~ U ( n , ~ ) ) = ~ 3 f o r a l l ~ E  Tn. 

Then enumerate first rn sets from {B �9 A~: [B n A n M[ = ~} as {Ae: ~ �9 Tn} 

and put G(~  U (n,~)) = A~. 

The mapping G naturally induces a mapping from all branches in the tree to 

countable sequences in Wl. The tree contains T ~ branches and there are only w~' 

sequences in wl. By the minimality of v and by T > 2 we have ~ > w~'. Thus 

there is an increasing sequence {an: n �9 w} of countable ordinals such that  the 

family of all branches 0 C ~o C . . .  qo~ C --" satisfying G(~n) = an has the size 

at least T +. But as all Tn'S are strictly smaller than T, there must be, in fact, ~-~ 

such branches. Since T ~ >_ a~ and since F induces a mapping from branches of 

the tree to distinct chains in U{A~: a < wl}, for a = SUPne~ an we have that  

[{A �9 A~: JAn M[ = ~}[ _> ~ .  

Thus, under the assumption ~"~ = 2 ~, all that  we need is to split every As  into 

A~,e (~ < 2 ~) in such a way that  for every g �9 [~]~ there is some a < wl such 

that  for every ~ < 2 k, [M n A[ = tr for some A �9 A~,r 

This is done as follows. Given a < wl, denote by A~ the set of all M �9 [~]~ 

with [{A �9 ,A~: [AAM[ = ~}[ _> ~ .  Since [2t4[ _< 2 ~ and since ~ = 2 ~, a routine 
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appl icat ion of the disjoint refinement l e m m a  [Ku] gives the desired par t i t ion.  

To complete  the  proof, assume 2 ~1 = w~. Then  if 2 ~ = w2, then  (a) applies. 

If 2 ~ = Wl, then  w2 = 2 c = IU(w)l. The  s t a t ement  follows now by L e m m a  2 and 

its Corollary, since every one-point  subset  of U(w) is nowhere dense. 

C o n c l u d i n g  r e m a r k s  

In the previous pa r t  of the paper  we formulated some results concerning Boolean 

a lgebra  7)~(n) (=  P ( n ) m o d [ ~ ]  <~) in topological  language. Pr imar i ly  we are 

interested in 7~(n )  as a forcing notion. 

Recall t ha t  the  Baire number  of P~(~)  is the smallest  size of a family S of 

par t i t ions  of uni ty  wi th  the following proper ty:  

for any ultrafi l ter  U on P~(~)  (this corresponds to uniform ultrafil ters on 

7~(n)) there exists a par t i t ion  R E S such tha t  U A R = 0. 

For our calculat ion of Baire  numbers  of 7)~(n)'s for different ~'s  we used the 

result  saying tha t  these algebras as forcing notion collapse cardinal  numbers .  Let  

us summar ize  what  is known of collapse of cardinals by 7~(n) .  A --* p denotes  

the fact tha t  A is collapsed to #. 

(i) For n = w, 2 ~~ ~ b [BPS] 

(ii) For ~ uncountable  and regular,  b~ --* w [BS] 

(iii) For n singular with cf(n) = w, 2 ~ --+ Wl [Theorem 2] 

(iv) For ~ singular with cf(~) # w, bcf(~ ) ~ w [Theorem 1] 

Under  addi t ional  assumpt ions  for singular cardinals more  is known: 

(v) For ~ singular with cf(n) = w and ~ = 2 ~, n~ --* Wl [BS] 

(vi) For n singular with cf(~) ~ w and 2 ~ = n+, 2 ~ --* w [BS] 

Let  us finish wi th  a reasonable conjecture in ZFC: for a singular cardinal  n wi th  

countable  cofinality, ~ -~ Wl, and for a singular cardinal  n with an uncountable  

cofinality, ~+ ~ w. 
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